The Williams System

Williams Prestressing / Post-Tensioning Systems consist of high tensile steel bars available in seven diameters from 1” (26 mm) to 3” (75 mm) with guaranteed tensile strengths to 1027 kips (4568 kN). They are provided with cold rolled threads over all or a portion of the bar’s length. All tension components for the systems are designed to develop 100% of the bar strength. All components of the systems are designed and manufactured in the United States. Williams All-Thread-Bar systems have been field proven around the world.

Applications

Williams All-Thread-Bars were developed for use as Prestressing bars. Over the years many other applications have been adopted such as:

- Transverse Post Tensioning
- Longitudinal Post Tensioning
- Pile Test Anchors
- Rock Anchors
- Concrete Ties
- Hanger Bolts
- Jacks
- Structural Steel Frame Ties
- Shear Pins
- Bridge Retrofit Applications
- Pre-Stressed Block and Brick Construction
- Seismic (earthquake) Restrainer Systems
- Ground Anchors and Soil Nails
- Wood Structure Post-Tension Bars
- Temporary High Strength Connections
- Tower Base Plate Anchor Bolts
- Sheet Pile Ties and Tie-backs
- High Strength Concrete Reinforcement Bars
- Multiple Corrosion Protection Anchors
- Wind Generator Foundation Anchor Bolts

Before Casting

After Casting
Steel Quality

Williams 150 KSI All-Thread-Bar should not be subjected to the heat of a torch, welding or used as a ground. Field cutting should be done with an abrasive wheel or band saw.

Steel Quality

Williams 1"", 1-1/4"", & 1-3/8" 150 KSI bars are smooth, hot rolled, high strength prestressing steel. The bars are cold-stressed and stress relieved to produce the above properties. The 1-3/4" through 3" 150 KSI bars are from an alloy based steel that is hot rolled, quenched and tempered to produce the prescribed mechanical properties of ASTM A722.

Thorough inspection and traceability are carried out during all phases of manufacturing to assure the highest standards of quality.

Properties

Williams 150 KSI bars are manufactured in strict compliance with ASTM A722 and AASHTO M275 Highway Specifications. The prestressing steel is high in strength yet ductile enough to exceed the specified elongation and reduction of area requirements. Selected heats can also pass the 135° supplemental bend test when required. Testing has shown Williams 150 KSI All-Thread-Bars to meet or exceed post tensioning bar and rock anchoring criteria as set by the Post-Tensioning Institute including dynamic test requirements beyond 500,000 cycles of loading.

Williams 360° continuous thread deformation pattern has the ideal relative rib area configuration to provide excellent bond strength capability to grout or concrete, far better than traditional reinforcing deformation patterns.

Tensile Strength & Working Loads

Williams 150 KSI bars are available with ultimate tensile strengths and working loads as displayed above. Safety factors and functional working loads are at the discretion of the project design engineer, however test loads should never exceed 80% of the published ultimate bar strength.
Williams All-Thread-Bar fasteners are machine threaded (no cast threads) to specific tolerances for precision adjustments. The All-Thread-Bar fasteners below are designed to develop 100% of the All-Thread Bar ultimate strength meeting all criteria set forth for anchorages by the Post-Tensioning Institute and ASTM A-722-15 specifications. Standard all-thread bars and spherical base hex nuts are available to be used with standard or dished plates, respectively.

Standard All-Thread-Bar couplings are stop-type having both ends tapped equal distance with an untapped section in the center. Stop-type couplings allow for proper engagement of each All-Thread-Bar. Couplings tapped completely through are available by special request.

Placing Bars

Williams All-Thread-Bars can be placed prior to the concrete pour or assembled through ducting in cast concrete. Care should be taken not to impact the bars or subject them to excessive bending. When coupled bars are used in precast concrete, upset ducting may be used on one end when casting the concrete to allow the coupled bar to slide into place. Stop-type couplings are provided with Williams All-Thread-Bars to assure proper engagement of each bar. As a safety measure, it is always a good idea to mark the end of each All-Thread-Bar to be coupled with the proper engagement length. A grease pencil or similar tool can be used.
Other Accessories

Steel Bearing Plates

Williams steel bearing plates, available in Grades 36 or 50, are standard with a round hole or dished plates for use with spherical hex nuts. They can be drilled to provide free access for grout tube entry. Bearing plates are customized for each application. Plate dimensions should be specified around the parameters of the project. In addition, corrosion protection should be considered along with specifying hole diameter, bar angle and duct size.

Pocket Former

Local Zone Reinforcing

The compressive strength of the concrete in the local zone (area directly under the bearing plate) can be enhanced when necessary by use of lateral confinement of spiral reinforcement. The rebar spirals are available in #3 through #5 diameters of Grade 60 Rebar and made to the project design requirements for diameter, pitch, and length. They are also available with or without a deformation pattern.

Galvanized Metal Corrugated Duct

Williams Galvanized Spiral Metal Duct meets all physical and structural recommendations for post-tensioning duct as indicated by the Post-Tensioning Institute. The Duct is available in 2”, 3”, and 4” diameter with couplings and reducer couplings for all sizes.

Polypropylene Corrugated Duct

Polyethylene Corrugated Duct

The stable characteristics of Williams polypropylene & polyethylene duct are normally preferred where additional corrosion protection is desirable. Polypropylene Duct has been approved by the Florida DOT for internal tendons and is available in 2-3/8” internal diameter. Polyethylene Duct is available in 2”, 3”, and 4” diameters. Couplings are available for all sizes.

R73-JN Jam Nuts

These Jam/Collar Nuts can’t be substituted for full strength nuts and can’t be used on bars other than Williams 150 KSI All-Thread-Bars of the same diameter.

<table>
<thead>
<tr>
<th>Nominal Bar Diameter Range</th>
<th>Minimum Diameter</th>
<th>Maximum Diameter</th>
<th>Length</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” to 1-3/8” (26 to 36 mm)</td>
<td>5-5/16” (135 mm)</td>
<td>6-1/4” (159 mm)</td>
<td>8-1/2” (216 mm)</td>
<td>R85-K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>R85-2K</td>
<td>1-3/4”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM F405</th>
<th>Polypropylene Corrugated Duct</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D4104</td>
<td>Polyethylene Corrugated Duct</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1K - with Round Hole</th>
<th>S3K - Plate with Welded Trumpet</th>
<th>R80 - with Dished Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williams steel bearing plates, available in Grades 36 or 50, are standard with a round hole or dished plates for use with spherical hex nuts. They can be drilled to provide free access for grout tube entry. Bearing plates are customized for each application. Plate dimensions should be specified around the parameters of the project. In addition, corrosion protection should be considered along with specifying hole diameter, bar angle and duct size.</td>
<td>These Jam/Collar Nuts can’t be substituted for full strength nuts and can’t be used on bars other than Williams 150 KSI All-Thread-Bars of the same diameter.</td>
<td>Williams steel bearing plates, available in Grades 36 or 50, are standard with a round hole or dished plates for use with spherical hex nuts. They can be drilled to provide free access for grout tube entry. Bearing plates are customized for each application. Plate dimensions should be specified around the parameters of the project. In addition, corrosion protection should be considered along with specifying hole diameter, bar angle and duct size.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bar Diameter</th>
<th>Across Flats</th>
<th>Across Corners</th>
<th>Thickness</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” (26 mm)</td>
<td>1-3/4” (44 mm)</td>
<td>2.0” (51 mm)</td>
<td>0.41” (10 mm)</td>
<td>R73-08JN</td>
</tr>
<tr>
<td>1-1/4” * (32 mm)</td>
<td>2-1/4” (57 mm)</td>
<td>2.6” (66 mm)</td>
<td>0.47” (12 mm)</td>
<td>R74-10JN</td>
</tr>
<tr>
<td>1-3/8” * (36 mm)</td>
<td>2-1/8” (54 mm)</td>
<td>OD 2-3/8” (60 mm)</td>
<td>0.53” (14 mm)</td>
<td>R74-11JN</td>
</tr>
<tr>
<td>1-3/4” * (46 mm)</td>
<td>2-3/4” (70 mm)</td>
<td>OD 3” (77 mm)</td>
<td>0.88” (14 mm)</td>
<td>R74-14JN</td>
</tr>
<tr>
<td>2-1/4” * (57 mm)</td>
<td>3-1/4” (83 mm)</td>
<td>OD 3-1/2” (89 mm)</td>
<td>0.94” (24 mm)</td>
<td>R74-18JN</td>
</tr>
<tr>
<td>2-1/2” * (65 mm)</td>
<td>4” (102 mm)</td>
<td>OD 4-1/4” (108 mm)</td>
<td>0.94” (24 mm)</td>
<td>R74-20JN</td>
</tr>
<tr>
<td>3” * (75 mm)</td>
<td>4-1/4” (108 mm)</td>
<td>OD 5” (127 mm)</td>
<td>2” (51 mm)</td>
<td>R74-24JN</td>
</tr>
</tbody>
</table>

Round Collar Jam Nut - Special Order machined Hex available
Project Photos

Project: SR 520 Evergreen Point Floating Bridge
General Contractor: Kiewit/General/Manson, JV
Post-Tensioning Supplier: Schwager Davis, Inc.
Location: Seattle, WA

Project: Spaghetti Bowl
Contractor: Walter & SCI Construction
Location: Las Vegas, NV

Project: Memorial Causeway Bridge
Contractor: PCL / VSL
Location: Clearwater, FL

Project: Muskegon River Bridge
Contractor: Freyssinet USA
Location: Big Rapids, MI

Project: Sunshine Skyway High Level Approach Column Repair
Contractor: Delta Construction Specialties / VSL
Location: St. Petersburg, FL

Project: Belleair Beach Causeway
Contractor: Johnson Brothers Corporation & Misner Marine Construction / VSL
Location: Pinellas County, FL
Project: 4 Bears Bridge
PT Contractor: VStructural
Location: New Town, ND

Project: Devil’s Slide Bridge
Contractor: Disney Construction
Post-Tensioning Supplier: Schwager Davis, Inc.
Location: Pacifica, CA

Project: Colorado River Bridge
General Contractor: Obayashi / P&J, JV
Post-Tensioning Supplier: Schwager Davis, Inc.
Location: Hoover Dam, NV

Project Name: San Francisco - Oakland East Bay Skyway Bridge
Designer: T.Y. Lin / Moffet & Nichol, JV
Contractor: Kiewit / FCI /Manson, JV
Post-Tensioning Supplier: Schwager Davis, Inc.

Project: Astronomical Observatory Tower
Contractor: Narum Concrete Construction
Location: Central Washington University, Ellensburg, WA

Project: Precast Post-Tensioned Panel Wall
Contractor: Morgan & Oswood
Location: Hoback Junction, WY
Corrosion Protection

Cement Grout
A contributing layer of corrosion protection for pre-stressed concrete anchors is complete encapsulation in cement grout of the steel tendon from the base of the concrete anchor to the anchorage. Portland cement grouts are alkaline in nature, render encased steel into a passive state, and eliminate any contact with the steel to air or water. Intelligent design, followed by thorough grouting operations performed by trained technicians provides a competent layer of corrosion protection for Williams prestressed concrete anchors. Cement grout should not be considered a contributing means of corrosion protection if used with a passive concrete anchor application as the grout will be prone to cracking when elongation occurs due to the dynamic loading of the passive anchor.

Williams recommends a portland cement based, shrinkage compensated, or expansive grout as the cement grout corrosion protection for prestressed concrete anchor applications. Grout should be injected after prestress forces are locked off by the use of grout tubes, de-air holes, or grout attachments to fill the remaining drill hole annulus around Williams concrete anchors.

Hot Dip Galvanizing
Zinc serves as a sacrificial metal corroding preferentially to the steel. Galvanized bars have excellent bond characteristics to grout or concrete and do not require as much care in handling as epoxy coated bars. However, galvanization of anchor rods is more expensive than epoxy coating and often has greater lead time. Hot dip galvanizing bars and fasteners should be done in accordance with ASTM A153. Typical galvanized coating thickness for steel bars and components is between 3 and 4 mils. 150 KSI high strength steel bars shall require special cleaning procedures to avoid problems associated with hydrogen embrittlement in compliance with ASTM A143.

Epoxy Coating
Fusion bonded epoxy coating of steel bars to help prevent corrosion has been successfully employed in many applications because of the chemical stability of epoxy resins. Epoxy coated bars and fasteners should be done in accordance with ASTM A775 or ASTM A934. Coating thickness is generally specified between 7 to 12 mils. Epoxy coated bars and components are subject to damage if dragged on the ground or mishandled. Heavy plates and nuts are often galvanized even though the bar may be epoxy coated since they are difficult to protect against abrasion in the field. Epoxy coating patch kits are often used in the field for repairing nicked or scratched epoxy surfaces.

Corrosion Inhibiting Grease, Gel or Wax with Sheath
Williams corrosion inhibiting compounds can be placed in the free stressing sleeves, in the end caps, or in the trumpet areas. Most commonly bars are greased and PVC is slipped over the grease bar prior to shipping. Each of the options Williams offers are of an organic compound that provide the appropriate moisture displacement and have corrosion inhibiting additives with self-healing properties. They can be pumped or applied manually. Grease and Gel stay permanently viscous, while wax is solid at normal temperatures and must be heated to liquify and facilitate pumping. Each compound is chemically stable, and non-reactive with the prestressing steel, duct materials, or grout, and all meet PTI standards for Corrosion Inhibiting compounds.

Adhesive Backed Heat Shrink
Provides a corrosion protected seal when connecting smooth or corrugated segments.

End Caps
Williams offers several different types of end caps to provide corrosion protection at otherwise exposed anchor ends. Most often the caps are packed with corrosion inhibiting grease. Caps made from steel are used in exposed impact areas. The Fiber Reinforced Nylon End Cap meets the Florida DOT standards for New Directions of Post-Tensioned Bridges.
Grouting Accessories

S5Z WIL-X CEMENT GROUT
Conforms to ASTM C845 Type K
Wil-X is chemically compensated for shrinkage. It has a high bond value and is crack resistant for permanent installations. Because it is a cement-grout, it is non-explosive and has a long shelf life when kept dry.

Wil-X may be used to build up leveling pads by simply mixing with sand or pea gravel. This mixture should not be run through the grout pump.

Setting Time: Gilmore Needles (ASTM C266). Initial set 45 minutes; final set 10 hours.

Comparative compressive strength test in PSI (modified ASTM C109) Actual strengths as mixed according to Williams Instructions range from 6,000 to 9,500 PSI depending on water content. Copy of ASTM Modification available upon request.

<table>
<thead>
<tr>
<th>Time</th>
<th>PSI</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Day</td>
<td>2,800</td>
<td>19.3</td>
</tr>
<tr>
<td>3 Days</td>
<td>6,400</td>
<td>44.1</td>
</tr>
<tr>
<td>7 Days</td>
<td>7,700</td>
<td>53.1</td>
</tr>
<tr>
<td>28 Days</td>
<td>9,500</td>
<td>65.5</td>
</tr>
</tbody>
</table>

Note: Results based on a controlled laboratory environment. Jobsite results may vary based on temperature and w/c ratio.

5 gallon, resealable, moisture proof, polypropylene pails

Compressive Strength Wil-X Cement Grout & Water
(74° F Dry Environment)
0.44 w/c ratio

T3P Heavy Duty Plastic Grout Tube
Furnished in product lengths for the rockbolts or in rolls.

<table>
<thead>
<tr>
<th>O.D.</th>
<th>I.D.</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>1/4" (6 mm)</td>
<td>T3P03002</td>
</tr>
<tr>
<td>1/2"</td>
<td>3/8" (10 mm)</td>
<td>T3P04003</td>
</tr>
<tr>
<td>5/8"</td>
<td>1/2" (13 mm)</td>
<td>T3P05004</td>
</tr>
<tr>
<td>3/4"</td>
<td>5/8" (16 mm)</td>
<td>T3P06005</td>
</tr>
<tr>
<td>1" Nom.</td>
<td>3/4" Nom. (19 mm)</td>
<td>T3P06</td>
</tr>
</tbody>
</table>

Super Plasticizer
Plasticizer is available and is used as a water reducer for ease of pumping grout through tubes at lower water to cement ratios.

Colloidal Grout Plant
The heavy duty, high volume Colloidal Grout Plant is favored for precision post-tension grouting. The unit features a high speed shear mixer that thoroughly wets each particle and discharges the mixed material into a 13 cubic foot capacity agitating holding tank. A direct coupled progressing cavity pump delivers slurries at a rate of up to 20 gpm and pressures of up to 261 psi. The unit easily mixes and pumps slurries of Portland cement, fly ash, bentonite, and lime flour. All controls are conveniently located on the operator platform for easy one-man control.

Pump
Pump Type: 31.6 progressing cavity
Output/Pressure: variable up to 20 gpm, 261 psi

Colloidal Mixer
Mix Tank: 13.0 CF with bottom clean out
Mixing Pump: 2 x 3 x 6 diffuser-type centrifugal
Holding Tank: 13.0 CF paddle agitating

Drive Power
Air: 300 CFM, 100 psi

Physical Specifications
Dimensions: 96”L x 60”W x 63”H
Weight: 1800-2800 lbs.
Torque Tensioning

The high quality rolled thread of Post-Tensioning Bars can be torque tensioned in limited situations up to 60% of the bar’s ultimate strength. This eliminates the costly and time-consuming process of lifting heavy jacking equipment on and off with a crane. The entire process takes only minutes by workers already in place and relieves expensive crane equipment to be utilized elsewhere on the project. Due to many variables of a torque tension relationship, Williams does not recommend the torque method of applying the load as an accurate substitute for direct tensioning with a hydraulic jack.

Tensioning By Jacking

Tensioning by jacking can be accomplished with the various capacity tensioning jacks shown below. Williams T80 Post-Tensioning Jacks are designed to be especially helpful for recessed situations, while the T7Z Hydraulic Test Jacks are designed for open areas. Jacks are matched with electric or air pumps. Jacks may be purchased or rented as required. Rental equipment packages include ram on mounted stand, hoses, pull rod, gauges, power unit and knocker wrench for transferring the load from the jack to the anchor head.

T8Z Hydraulic Torque Wrench

The hydraulic torque wrench is used for tensioning anchors in tight fitting locations where it would be difficult to use an hydraulic jack. The wrench is also recommended for use when setting the large diameter Spin-Lock anchors. The torque wrenches are lightweight and can achieve a maximum of 7,400 ft-lbs. All Hydraulic Torque Wrenches have 1-1/2” square drive outputs.

T8Z Torque Wrench

For applying torque to the anchor bolt when setting the anchor.

T3Z Hex Knocker Wrench

Hex knocker wrenches are used for safe hex nut adjustment inside of open frame jacks.

T8Z-04 Torque Multiplier (4:1)

For use with T8Z Torque Wrench. Available with 1” square drive input and 1-1/2” output for up to 4,000 ft-lbs maximum torque.

T1Z Long Fitting Tool Adapters

For torquing hex nuts, the deep socket fits over the bar’s end. Works with torque wrench or impact gun. Available with a 1” square drive.

K3F-26 Long Fitting Wrench Adapter

For applying torque to recessed rockbolt nuts that are under tension when using hydraulic jacks. Available in all rockbolt sizes.
Hydraulic Jacks

T80 Post-Tension Hydraulic Jacks
With the T80 series the enclosed bearing housing contains a geared socket drive to tighten the bolt hex nut during tensioning. Test jack housing will accommodate up to a 16” deep pocket (The 200 ton accommodates a 14-1/2” pocket).

<table>
<thead>
<tr>
<th>Jack Capacity</th>
<th>Pump Method</th>
<th>Ram Height</th>
<th>Base Size</th>
<th>Ram Travel</th>
<th>Minimum Total Ram & Frame Height</th>
<th>Maximum Test Rod Diameter</th>
<th>Ram Area</th>
<th>Approx. Total Ram & Frame Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 tons (534 kN)</td>
<td>Hand, Air, or Electric Double Acting</td>
<td>9-1/2” (241 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>6-1/2” (165 mm)</td>
<td>33” (838 mm)</td>
<td>2” (51 mm)</td>
<td>1.1-1/4” (32 mm)</td>
<td>225 lbs (102 kg)</td>
</tr>
<tr>
<td>60 tons (534 kN)</td>
<td>Hand, Air, or Electric Double Acting</td>
<td>12-3/4” (324 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>12-1/4” (311 mm)</td>
<td>36” (914 mm)</td>
<td>2” (51 mm)</td>
<td>1.1-1/4” (32 mm)</td>
<td>125 lbs (56 kg)</td>
</tr>
<tr>
<td>100 tons (890 kN)</td>
<td>Air or Electric Double Acting</td>
<td>13-1/2” (343 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>12-1/4” (311 mm)</td>
<td>36” (914 mm)</td>
<td>2” (51 mm)</td>
<td>1.1-1/4” (32 mm)</td>
<td>125 lbs (56 kg)</td>
</tr>
<tr>
<td>150 tons (1334 kN)</td>
<td>Air or Electric Double Acting</td>
<td>12-1/4” (311 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>12-1/4” (311 mm)</td>
<td>36” (914 mm)</td>
<td>2” (51 mm)</td>
<td>1.1-1/4” (32 mm)</td>
<td>125 lbs (56 kg)</td>
</tr>
</tbody>
</table>

T7Z Open Frame Hydraulic Jacks
Used for testing and pre-stressing All-Thread-Bars. Available with up to 5-1/8” center hole. Unit comes with ram, pump, gauge, hoses, jack stand, high strength coupling, high strength test rod, plate, hex nut and knocker wrench.

<table>
<thead>
<tr>
<th>Jack Capacity</th>
<th>Pump Method</th>
<th>Ram Height</th>
<th>Base Size</th>
<th>Ram Travel</th>
<th>Minimum Total Ram & Frame Height</th>
<th>Maximum Test Rod Diameter</th>
<th>Ram Area</th>
<th>Approx. Total Ram & Frame Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 tons (89 kN)</td>
<td>Hand Single Acting</td>
<td>5-5/16” (135 mm)</td>
<td>3” Diameter (76 mm)</td>
<td>2-1/2” (64 mm)</td>
<td>8-3/8” (213 mm)</td>
<td>3/4” (19 mm)</td>
<td>12 lbs (5.4 kg)</td>
<td></td>
</tr>
<tr>
<td>30 tons (267 kN)</td>
<td>Hand Double Acting</td>
<td>6-1/16” (154 mm)</td>
<td>8” x 8” (203 x 203 mm)</td>
<td>3” (76 mm)</td>
<td>19” (483 mm)</td>
<td>1-1/4” (32 mm)</td>
<td>80 lbs (36 kg)</td>
<td></td>
</tr>
<tr>
<td>60 tons (534 kN)</td>
<td>Hand, Air, or Electric Double Acting</td>
<td>9-1/2” (241 mm)</td>
<td>9” x 9” (228 x 228 mm)</td>
<td>6” (152 mm)</td>
<td>29-1/8” (740 mm)</td>
<td>3-1/8” (79 mm)</td>
<td>153 lbs (69 kg)</td>
<td></td>
</tr>
<tr>
<td>60 tons (534 kN)</td>
<td>Hand, Air, or Electric Double Acting</td>
<td>12-3/4” (324 mm)</td>
<td>9” x 9” (228 x 228 mm)</td>
<td>6-1/2” (165 mm)</td>
<td>32-1/4” (819 mm)</td>
<td>2-1/2” (64 mm)</td>
<td>173 lbs (78 kg)</td>
<td></td>
</tr>
<tr>
<td>100 tons (890 kN)</td>
<td>Air or Electric Double Acting</td>
<td>13-1/2” (343 mm)</td>
<td>9” x 9” (228 x 228 mm)</td>
<td>6” (152 mm)</td>
<td>29-1/8” (740 mm)</td>
<td>3-1/8” (79 mm)</td>
<td>198 lbs (87 kg)</td>
<td></td>
</tr>
<tr>
<td>150 tons (1334 kN)</td>
<td>Air or Electric Double Acting</td>
<td>12-1/4” (311 mm)</td>
<td>12” x 12” (305 x 305 mm)</td>
<td>8” (203 mm)</td>
<td>34” (864 mm)</td>
<td>4-1/16” (103 mm)</td>
<td>192 lbs (87 kg)</td>
<td></td>
</tr>
<tr>
<td>200 tons (1779 kN)</td>
<td>Air or Electric Double Acting</td>
<td>12-1/4” (311 mm)</td>
<td>12” x 12” (305 x 305 mm)</td>
<td>8” (203 mm)</td>
<td>34” (864 mm)</td>
<td>4-1/16” (103 mm)</td>
<td>518 lbs (235 kg)</td>
<td></td>
</tr>
<tr>
<td>200 tons (1779 kN)</td>
<td>Air or Electric Double Acting</td>
<td>27-1/2” (699 mm)</td>
<td>12” x 12” (305 x 305 mm)</td>
<td>15” (381 mm)</td>
<td>49-1/4” (1250 mm)</td>
<td>4” (100 mm)</td>
<td>604 lbs (274 kg)</td>
<td></td>
</tr>
<tr>
<td>300 tons (2670 kN)</td>
<td>Electric Double Acting</td>
<td>27-1/2” (699 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>15” (381 mm)</td>
<td>50-1/2” (1283 mm)</td>
<td>5-3/8” (137 mm)</td>
<td>1,400 lbs (635 kg)</td>
<td></td>
</tr>
<tr>
<td>400 tons (3558 kN)</td>
<td>Electric Double Acting</td>
<td>18-3/4” (476 mm)</td>
<td>15” Dia. (381 mm)</td>
<td>6” (152 mm)</td>
<td>45-3/4” (1162 mm)</td>
<td>4-1/4” (108 mm)</td>
<td>1,300 lbs (590 kg)</td>
<td></td>
</tr>
</tbody>
</table>
Williams offers a full line of Ground Anchors, Concrete Anchors, Post-Tensioning Systems, Wind Turbine Foundation Systems, Marine Tieback Systems and Concrete Forming Hardware Systems for whatever your needs may be.

Also available from Williams are Rock & Soil Anchor Sample Specifications and High Capacity Concrete Anchor Sample Specifications.