Tie Rod Systems for Marine Sheet Piles and Tieback Anchors

No. 619u1
Williams Tie Rod Advantages

- Lower costs with higher strengths and lighter weights.
- Continuously threaded for maximum versatility or threaded on ends only
- Durable threads and components capable of developing the full capacity of the bar
- Both right hand and left hand threads available upon request to tighten tie rods using turnbuckles or sleeve nuts.
- 50 foot stock lengths, 60 foot available on special request.
- Several options of corrosion protection available from simple coatings to advanced designs for aggressive environments.

150 KSI All-Thread-Bar
Williams 150 KSI All-Thread Bar consist of high tensile steel available in seven diameters from 1" (26 mm) to 3" (75 mm) with guaranteed tensile strengths up to 1027 kips (4568 kN). All diameters are available in continuous lengths up to 50’. Bars are provided with cold rolled threads over all or a portion of the bar’s length. All tension components for the systems are designed to develop 100% of the bars published ultimate strength. Bars are produced to ASTM A-722 physical standards. Williams All-Thread 150 KSI Bar must never be welded, subjected to the high heat of a torch, or used as a ground. Field cutting should be done with an abrasive wheel or band saw. All components of the systems are designed and manufactured in the United States and have been proven on job sites around the world.

Grade 75 All-Thread Rebar
Williams 75 All-Thread Rebar is a continuously threaded bar specially designed to be used with fasteners. Common applications for the Grade 75 All-Thread Rebar are tie rods and ground anchors. All-Thread Rebar is available in 11 diameters from #6 (20 mm) through #28 (89 mm) with ultimate tensile strengths up to 961 kips (4274 kN) and lengths up to 50 feet. The bars are provided with a special thread designed to meet the requirements of ASTM A615 and Canadian Rebar Specifications CSA-G30.18-M92.

Threads are cold rolled on the entire length or a portion of the bar as desired. Because of the full 360 degrees concentric thread, Williams All-Thread Rebar should only be bent under special provisions. All tension components are designed to develop 100% of the bar’s published ultimate strengths. All components for the system are manufactured in North America.
Williams All-Thread Bars are more economical than heavier ASTM A36 upset threaded rods. All-Thread Bars are usually on the order of 10-30% less expensive than A36 tie rods when bar comparisons are based on equivalent ultimate strengths. Not only are the bars less expensive but since the bars are smaller they are lighter. Additional savings result with smaller connectors, protective coatings and material freight. The bars below are shown in sizes relative to each other and have approximately equal yield strength.

Conversion Chart

Old A36 Tie Rods

<table>
<thead>
<tr>
<th>Actual Tie Rod Diameter</th>
<th>Heavy Upset Thread Diameter</th>
<th>Nominal Weight</th>
<th>Minimum Yield Strength</th>
<th>Minimum Ultimate Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4" (32 mm)</td>
<td>1-1/2" (36 mm)</td>
<td>4.17 lbs/ft (6.21 kN/m)</td>
<td>44.2 kips (197 kN)</td>
<td>71.2 kips (317 kN)</td>
</tr>
<tr>
<td>1-3/8" (36 mm)</td>
<td>1-3/4" (43 mm)</td>
<td>5.05 lbs/ft (7.52 kN/m)</td>
<td>53.5 kips (238 kN)</td>
<td>86.2 kips (363 kN)</td>
</tr>
<tr>
<td>1-1/2" (36 mm)</td>
<td>2" (51 mm)</td>
<td>6.01 lbs/ft (8.94 kN/m)</td>
<td>63.6 kips (283 kN)</td>
<td>103 kips (456 kN)</td>
</tr>
<tr>
<td>1-5/8" (41 mm)</td>
<td>2" (51 mm)</td>
<td>7.05 lbs/ft (10.5 kN/m)</td>
<td>74.7 kips (332 kN)</td>
<td>120 kips (535 kN)</td>
</tr>
<tr>
<td>1-3/4" (43 mm)</td>
<td>2-1/4" (57 mm)</td>
<td>8.18 lbs/ft (12.2 kN/m)</td>
<td>86.6 kips (385 kN)</td>
<td>140 kips (620 kN)</td>
</tr>
<tr>
<td>2" (51 mm)</td>
<td>2-1/2" (65 mm)</td>
<td>10.7 lbs/ft (15.9 kN/m)</td>
<td>113 kips (503 kN)</td>
<td>182 kips (810 kN)</td>
</tr>
<tr>
<td>2-1/4" (57 mm)</td>
<td>2-3/4" (70 mm)</td>
<td>13.5 lbs/ft (20.1 kN/m)</td>
<td>143 kips (631 kN)</td>
<td>231 kips (1028 kN)</td>
</tr>
<tr>
<td>2-1/2" (65 mm)</td>
<td>3-1/4" (76 mm)</td>
<td>16.7 lbs/ft (24.9 kN/m)</td>
<td>177 kips (787 kN)</td>
<td>265 kips (1260 kN)</td>
</tr>
<tr>
<td>2-3/4" (70 mm)</td>
<td>3-1/2" (80 mm)</td>
<td>20.2 lbs/ft (30.1 kN/m)</td>
<td>214 kips (962 kN)</td>
<td>345 kips (1532 kN)</td>
</tr>
<tr>
<td>3" (76 mm)</td>
<td>3-3/4" (90 mm)</td>
<td>24.0 lbs/ft (36.7 kN/m)</td>
<td>254 kips (1130 kN)</td>
<td>410 kips (1823 kN)</td>
</tr>
<tr>
<td>3-1/4" (83 mm)</td>
<td>4" (102 mm)</td>
<td>28.2 lbs/ft (42.0 kN/m)</td>
<td>299 kips (1330 kN)</td>
<td>481 kips (2141 kN)</td>
</tr>
<tr>
<td>3-1/2" (80 mm)</td>
<td>4-1/8" (108 mm)</td>
<td>32.7 lbs/ft (46.7 kN/m)</td>
<td>346 kips (1630 kN)</td>
<td>538 kips (2482 kN)</td>
</tr>
<tr>
<td>3-3/4" (96 mm)</td>
<td>4-1/2" (114 mm)</td>
<td>37.6 lbs/ft (56.0 kN/m)</td>
<td>398 kips (1770 kN)</td>
<td>641 kips (2951 kN)</td>
</tr>
<tr>
<td>4" (102 mm)</td>
<td>4-1/8" (114 mm)</td>
<td>43.1 lbs/ft (64.1 kN/m)</td>
<td>431 kips (1911 kN)</td>
<td>729 kips (3242 kN)</td>
</tr>
<tr>
<td>4-1/4" (105 mm)</td>
<td>4-3/4" (121 mm)</td>
<td>46.6 lbs/ft (67.3 kN/m)</td>
<td>483 kips (2173 kN)</td>
<td>823 kips (3634 kN)</td>
</tr>
<tr>
<td>4-1/2" (114 mm)</td>
<td>5" (127 mm)</td>
<td>54.5 lbs/ft (81.1 kN/m)</td>
<td>573 kips (2540 kN)</td>
<td>922 kips (4101 kN)</td>
</tr>
<tr>
<td>4-3/4" (121 mm)</td>
<td>5-1/4" (133 mm)</td>
<td>60.7 lbs/ft (89.3 kN/m)</td>
<td>631 kips (2838 kN)</td>
<td>1028 kips (4573 kN)</td>
</tr>
<tr>
<td>5" (127 mm)</td>
<td>5-1/4" (133 mm)</td>
<td>67.3 lbs/ft (100.1 kN/m)</td>
<td>707 kips (3145 kN)</td>
<td>1139 kips (5067 kN)</td>
</tr>
<tr>
<td>5-1/4" (133 mm)</td>
<td>5-3/4" (140 mm)</td>
<td>74.2 lbs/ft (110.9 kN/m)</td>
<td>779 kips (3465 kN)</td>
<td>1256 kips (5387 kN)</td>
</tr>
<tr>
<td>5-3/4" (140 mm)</td>
<td>6" (152 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grade 75 All-Thread Rebar

<table>
<thead>
<tr>
<th>Nominal Bar Diameter</th>
<th>Approx. Thread Major Dia.</th>
<th>Nominal Weight</th>
<th>Minimum Yield Strength</th>
<th>Minimum Ultimate Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 - 1" (25 mm)</td>
<td>1-1/8" (28.6 mm)</td>
<td>7.7 lbs/ft (10.0 kg/m)</td>
<td>27.2 kips (120 kN)</td>
<td>49.3 kips (214 kN)</td>
</tr>
<tr>
<td>#9 - 1-1/8" (32 mm)</td>
<td>1-5/16" (31.8 mm)</td>
<td>3.4 lbs/ft (4.6 kg/m)</td>
<td>7.5 kips (46 kN)</td>
<td>10 kips (57 kN)</td>
</tr>
<tr>
<td>#10 - 1-1/4" (32 mm)</td>
<td>1-5/8" (34.9 mm)</td>
<td>4.3 lbs/ft (5.9 kg/m)</td>
<td>95.3 kips (424 kN)</td>
<td>127 kips (555 kN)</td>
</tr>
<tr>
<td>#11 - 1-1/2" (36 mm)</td>
<td>2-1/4" (38.1 mm)</td>
<td>5.3 lbs/ft (7.5 kg/m)</td>
<td>117 kips (521 kN)</td>
<td>156 kips (694 kN)</td>
</tr>
<tr>
<td>#14 - 1-1/4" (43 mm)</td>
<td>2-3/4" (47.6 mm)</td>
<td>7.6 lbs/ft (11.8 kg/m)</td>
<td>169 kips (750 kN)</td>
<td>225 kips (1001 kN)</td>
</tr>
</tbody>
</table>

150 KSI All-Thread-Bar

<table>
<thead>
<tr>
<th>Nominal Bar Diameter</th>
<th>Approx. Thread Major Dia.</th>
<th>Nominal Weight</th>
<th>Minimum Yield Strength</th>
<th>Minimum Ultimate Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" (25 mm)</td>
<td>1-1/8" (28.6 mm)</td>
<td>3.0 lbs/ft (4.0 kg/m)</td>
<td>7.4 kips (21 kN)</td>
<td>10.0 kips (57 kN)</td>
</tr>
<tr>
<td>1-1/4" (32 mm)</td>
<td>1-7/16" (36.5 mm)</td>
<td>4.5 lbs/ft (5.7 kg/m)</td>
<td>15.0 kips (667 kN)</td>
<td>190 kips (834 kN)</td>
</tr>
<tr>
<td>1-3/8" (36 mm)</td>
<td>1-9/16" (39.7 mm)</td>
<td>5.7 lbs/ft (5.9 kg/m)</td>
<td>190 kips (843 kN)</td>
<td>237 kips (1054 kN)</td>
</tr>
<tr>
<td>1-5/8" (39 mm)</td>
<td>2" (51.0 mm)</td>
<td>9.0 lbs/ft (12.5 kg/m)</td>
<td>312 kips (1386 kN)</td>
<td>390 kips (1734 kN)</td>
</tr>
<tr>
<td>2" (51.0 mm)</td>
<td>2-1/4" (63.5 mm)</td>
<td>14.1 lbs/ft (19.3 kg/m)</td>
<td>490 kips (2181 kN)</td>
<td>613 kips (2727 kN)</td>
</tr>
<tr>
<td>2-1/2" (65 mm)</td>
<td>2-1/2" (63.5 mm)</td>
<td>18.2 lbs/ft (27.1 kg/m)</td>
<td>622 kips (2796 kN)</td>
<td>778 kips (3457 kN)</td>
</tr>
<tr>
<td>2-3/4" (69.9 mm)</td>
<td>3" (75.0 mm)</td>
<td>24.1 lbs/ft (35.9 kg/m)</td>
<td>822 kips (3656 kN)</td>
<td>1027 kips (4006 kN)</td>
</tr>
</tbody>
</table>
Clevises

A clevis can be used when tie rods are designed for angle adjustment, or when access to the outer side of the sheet pile is difficult. Designers must provide the hole diameter required in the structural steel to allow for proper sizing of the clevis pin. Pin diameters are available from 3/4” through 4-1/4” diameter.

Articulating Coupler

Williams offers a specially designed articulating couplers for longer tie rod systems that allows the designer to mitigate soil backfill settlement concerns that potentially could cause failure of the tie rod in bending or shear. The articulating coupler allows freedom of vertical rotation on each side of the system as settlement occurs.

Stop-Type Coupling

Williams mechanical couplers develop 100% of the All-Thread-Bar published ultimate strength. Couplers can be ordered Tap Thru or Stop-Type (ensuring 50:50 engagement). A coupler, as opposed to a turnbuckle or sleeve nut, is generally used when a splice is required and tensioning of the tie rod is easily accessible externally at the nut/plate interface.

Turnbuckles & Sleeve Nuts

Sleeve Nuts and Turnbuckles are ideal when tensioning or adjusting of the tie rods is required internally at the bar to bar connection. The sleeve nut is less susceptible to bending than the turnbuckle, however the turnbuckle allows the installer to see the thread engagement. Both components require right and left hand threads.

Clevises

Clevis tapped for tie rod diameters

Connectors

<table>
<thead>
<tr>
<th>Bar Design & Nominal Dia.</th>
<th>Outside Diameter</th>
<th>Overall Length</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6 - 3/4” (19 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7 - 7/8” (22 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8 - 1” (25 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9 - 1-1/8” (29 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10 - 1-1/4” (32 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#11 - 1-3/8” (36 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#14 - 1-3/4” (43 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18 - 2-1/4” (57 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20 - 2-1/2” (64 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#24 - 3” (76 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#28 - 3-1/2” (89 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 KSI Couplings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1” (26 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/4” (32 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3/8” (36 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3/4” (46 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/4” (57 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2” (65 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3” (75 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sleeve Nut

- **Grade 75 Sleeve Nuts**
- **Across Flats**
- **Overall Length**
- **Part Number**
- **Diameter**
- **Outside Diameter**
- **Overall Length**
- **Part Number**

Turnbuckles

- **Overall Length**
- **Working Load**
- **Part Number**

Clevis

- **Overall Length**
- **Working Load**
- **Part Number**

Connectors

Clevises other accessories

Clevis tapped for tie rod diameters

Bunches & Sleeve Nuts

Sleeve Nuts and Turnbuckles are ideal when tensioning or adjusting of the tie rods is required internally at the bar to bar connection. The sleeve nut is less susceptible to bending than the turnbuckle, however the turnbuckle allows the installer to see the thread engagement. Both components require right and left hand threads.

Clevises

A clevis can be used when tie rods are designed for angle adjustment, or when access to the outer side of the sheet pile is difficult. Designers must provide the hole diameter required in the structural steel to allow for proper sizing of the clevis pin. Pin diameters are available from 3/4” through 4-1/4” diameter.

Articulating Coupler

Williams offers a specially designed articulating couplers for longer tie rod systems that allows the designer to mitigate soil backfill settlement concerns that potentially could cause failure of the tie rod in bending or shear. The articulating coupler allows freedom of vertical rotation on each side of the system as settlement occurs.
Other Accessories

End Caps

Williams offers end caps produced from fiber reinforced nylon, steel or PVC to provide corrosion protection at exposed anchor ends. Most often the caps are packed with corrosion inhibiting wax or grease. Caps made from reinforced nylon and steel are used in UV exposed areas. The fiber reinforced nylon end cap meets the Florida DOT standards.

Bearing Plates

Williams supplies anchorage plates that can be customized for each application. Plates can be flat, dished to accommodate spherical washers, include trumpets for corrosion protection continuity and holes that allow attachment to steel whalers and sheet pile.

<table>
<thead>
<tr>
<th>Bar Desig. & Nominal Dia.</th>
<th>Grade 75</th>
<th>Grade 75 Hex Nuts</th>
<th>Across Flats</th>
<th>Across Corners</th>
<th>Thickness</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 - 3/4" (19 mm)</td>
<td></td>
<td>1-1/4" (37 mm)</td>
<td>1-1/4" (29 mm)</td>
<td>2-1/2" (32 mm)</td>
<td>R63-06</td>
<td></td>
</tr>
<tr>
<td>#7 - 7/8" (22 mm)</td>
<td></td>
<td>1-7/16" (42 mm)</td>
<td>1-1/4" (32 mm)</td>
<td>2-1/2" (35 mm)</td>
<td>R63-07</td>
<td></td>
</tr>
<tr>
<td>#8 - 1" (25 mm)</td>
<td></td>
<td>1-5/8" (48 mm)</td>
<td>1-3/8" (38 mm)</td>
<td>2-3/4" (19 mm)</td>
<td>R63-09</td>
<td></td>
</tr>
<tr>
<td>#9 - 1-1/8" (29 mm)</td>
<td></td>
<td>1-7/8" (55 mm)</td>
<td>1-1/2" (33 mm)</td>
<td>3" (21 mm)</td>
<td>R63-10</td>
<td></td>
</tr>
<tr>
<td>#10 - 1-1/4" (32 mm)</td>
<td></td>
<td>2" (59 mm)</td>
<td>2" (51 mm)</td>
<td>3-1/4" (23 mm)</td>
<td>R63-11</td>
<td></td>
</tr>
<tr>
<td>#11 - 1-3/8" (36 mm)</td>
<td></td>
<td>2-1/2" (66 mm)</td>
<td>2-1/2" (64 mm)</td>
<td>3-3/4" (95 mm)</td>
<td>R63-12</td>
<td></td>
</tr>
<tr>
<td>#14 - 1-3/4" (43 mm)</td>
<td></td>
<td>2-3/4" (81 mm)</td>
<td>2-1/2" (64 mm)</td>
<td>5" (36 mm)</td>
<td>R64-16</td>
<td></td>
</tr>
<tr>
<td>#18 - 2-1/4" (57 mm)</td>
<td></td>
<td>3-1/2" (103 mm)</td>
<td>3-3/4" (95 mm)</td>
<td>5-1/4" (38 mm)</td>
<td>R64-17</td>
<td></td>
</tr>
<tr>
<td>#20 - 2-1/2" (64 mm)</td>
<td></td>
<td>4" (117 mm)</td>
<td>3-3/4" (95 mm)</td>
<td>6-1/2" (48 mm)</td>
<td>R64-18</td>
<td></td>
</tr>
<tr>
<td>#24 - 3" (76 mm)</td>
<td></td>
<td>OD 5" (127 mm)</td>
<td>1-1/2" (36 mm)</td>
<td>3-1/2" (28 mm)</td>
<td>R64-24**</td>
<td></td>
</tr>
<tr>
<td>#28 - 3-1/2" (99 mm)</td>
<td></td>
<td>OD 6" (152 mm)</td>
<td>1-1/2" (36 mm)</td>
<td>4" (28 mm)</td>
<td>R64-28**</td>
<td></td>
</tr>
</tbody>
</table>

150 KSI

1-3/4" (26 mm) 2-1/4" (51 mm) 1-5/8" (41 mm) R73-08
1-1/4" (32 mm) 2-1/4" (57 mm) 1-7/8" (48 mm) R73-09
1-3/8" (36 mm) 2-1/2" (64 mm) 2-1/8" (54 mm) R73-10
1-3/4" (46 mm) 2-1/2" (64 mm) 2-1/8" (54 mm) R73-11
2-1/4" (57 mm) 3" (73 mm) 3-1/2" (89 mm) R73-14
2-1/2" (65 mm) 3-1/2" (89 mm) 3-1/2" (89 mm) R73-15
2-1/4" (65 mm) 4-1/4" (102 mm) 3-3/4" (85 mm) R73-20
3" (75 mm) 4-1/4" (114 mm) 5-1/2" (140 mm) R74-24**

150 KSI Hex Nuts

2-1/2" (64 mm) 2-1/4" (44 mm) R88-08
3-1/8" (60 mm) 2-3/4" (70 mm) 2-1/4" (64 mm) R88-10
3-5/8" (90 mm) 3-1/4" (83 mm) 2-1/2" (64 mm) R88-11
4" (102 mm) 3-1/2" (89 mm) 3" (76 mm) R88-12
5-1/2" (140 mm) 5-1/8" (133 mm) 3-1/2" (99 mm) R73-18**
6" (152 mm) 5-1/2" (140 mm) 4-1/4" (108 mm) R73-20**
7" (178 mm) 7-1/2" (191 mm) 4-1/4" (108 mm) R74-24**

150 KSI Spherical Washers

<table>
<thead>
<tr>
<th>Outside Diameter</th>
<th>Thickness</th>
<th>Across Flats</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2" (64 mm)</td>
<td>2-1/4" (44 mm)</td>
<td>R88-08</td>
<td></td>
</tr>
<tr>
<td>3-1/8" (60 mm)</td>
<td>2-3/4" (70 mm)</td>
<td>R88-10</td>
<td></td>
</tr>
<tr>
<td>3-5/8" (90 mm)</td>
<td>3-1/4" (83 mm)</td>
<td>R88-11</td>
<td></td>
</tr>
<tr>
<td>4" (102 mm)</td>
<td>3-1/2" (89 mm)</td>
<td>R88-12</td>
<td></td>
</tr>
<tr>
<td>5-1/2" (140 mm)</td>
<td>5-1/8" (133 mm)</td>
<td>R73-18**</td>
<td></td>
</tr>
<tr>
<td>6" (152 mm)</td>
<td>5-1/2" (140 mm)</td>
<td>4-1/4" (108 mm)</td>
<td>R73-20**</td>
</tr>
<tr>
<td>7" (178 mm)</td>
<td>7-1/2" (191 mm)</td>
<td>4-1/4" (108 mm)</td>
<td>R74-24**</td>
</tr>
</tbody>
</table>
Specifications

- PVC End Cap
 - ASTM D1785
 - Schedule 40 PVC
- Hardened Washer
- Heavy Duty Hex Nut
- Spherical Hex Nut
 - Ductile Iron
- Beveled Washers
 - Ductile Iron
- Bearing Plate
 - Round Hole
 - ASTM A36
 - AASHTO M183
- PVC End Cap
 - ASTM D1785
 - Schedule 40 PVC
Smooth PVC Sleeve
Schedule 40 Pipe:
ASTM D1785
Class 200 Pipe:
ASTM D1785 & D2241
AASHTO No. R-6

Epoxy Coating
ASTM A775, A884, D3963
AASHTO M284, M254

Hot Dip Galvanizing
ASTM A153
AASHTO No. M232
For Accessories:
ASTM A153
AASHTO M111

150 KSI All-Thread-Bar
Type II ASTM A722
AASHTO M275

Stop-Type Coupling
Also available:
Turnbuckles & Sleeve Nuts

Factory Bitumastic Tape Wrap
AWWA C271

Grade 75 All-Thread Rebar
ASTM A615
AASHTO M31
Zinc serves as a sacrificial metal corroding preferentially to the steel. Galvanized bars have excellent bond characteristics to grout or concrete and do not require as much care in handling as epoxy coated bars. However, galvanization of anchor rods is more expensive than epoxy coating and often has greater lead time. Hot dip galvanizing bars and fasteners should be done in accordance with ASTM A153. Typical galvanized coating thickness for steel bars and components is between 3 and 4 mils. 150 KSI high strength steel bars shall require special cleaning procedures to avoid problems associated with hydrogen embrittlement in compliance with ASTM A143.

Fusion bonded epoxy coating of steel bars to help prevent corrosion has been successfully employed in many applications because of the chemical stability of epoxy resins. Epoxy coated bars and fasteners should be done in accordance with ASTM A775 or ASTM A934. Epoxy coated bars and components are subject to damage if dragged on the ground or mishandled. Heavy plates and nuts are often galvanized even though the bar may be epoxy coated since they are difficult to protect against abrasion in the field. Epoxy coating patch kits are often used in the field for repairing nicked or scratched epoxy surfaces.

Cement Grout filled corrugated polyethylene tubing is often used to provide an additional barrier against corrosion attack in highly aggressive soils. These anchors are often referred to as MCP or Multiple Corrosion Protection anchors. The steel bars are wrapped with an internal centralizer then placed inside of the polyethylene tube where they are then factory pre-grouted. When specifying couplings with MCP ground anchors, verify coupling locations with a Williams representative.

Coal tar epoxy has shown to be abrasion resistant, economical and durable. This product when specified should meet or exceed the requirements of (a) Corp of Engineers C-200, C200a and (b) AWWA C-210-92 for exterior. Typically the dry thickness is between 8 and 24 mils. Make sure the surfaces of the bar are clean and dry before coating.

Heat Shrink Tubing
Provides a corrosion protected seal when connecting smooth or corrugated segments.
Typical Applications

Tie Thru System
- Tie Rods to A-Frames
- Tie Rods to Steel H-Pile Deadman
- Tieback with Mechanical Soil Anchor
- Tie Thru System

Tie Rods to Concrete Deadman
- Tie Rods to Concrete Deadman
- Steel H-Pile

Tie Rods to Steel H-Pile Deadman
- Tie Rods to Steel H-Pile Deadman
- Steel H-Pile

Grout Bonded Rock or Soil Anchors
- Grout Bonded Rock or Soil Anchors
- Steel H-Piles

Tie Rods to A-Frames
- Tie Rods to A-Frames
- A-Frames
- Couplings
- Sting Ray Mechanical Soil Anchor

Articulating Coupling
- Articulating Coupling
- Sleeve Nut or Turn Buckle
- Steel Sheet Pile

Sting Ray Mechanical Soil Anchor
- Sting Ray Mechanical Soil Anchor
- Dredge Line

Sleeve Nut or Turn Buckle
- Sleeve Nut or Turn Buckle
- Concrete Cap

PVC Sheath
- PVC Sheath
- High Strength Steel Rod

Dredge Line
- Dredge Line

Concrete Cap
- Concrete Cap
- Steel H-Piles

High Strength Steel Rod
- High Strength Steel Rod
- Grout
Manta Ray® and Stingray® earth anchors are driven tipping plate soil anchors dependent on soil strength for reaction of tensile loads. Manta Ray anchors have working loads up to 20 kips, and Stingray anchors have working loads up to 50 kips. After driving the anchor to the required depth, the driving tool (called drive steel) is removed. The anchor is then tipped and proof tested with Williams Anchor Locking Kit from its edgewise-driving position to present its bearing area to the soil. This is called “load locking” and provides an immediate proof test of each anchor.

Manta Ray and Stingray anchors offer many significant advantages:
- Fast, easy installation
- Immediate proof test results
- No grout
- Inexpensive installation equipment
- Environmentally friendly
- No drilling required
- Anchors for a wide range of soils & applications

There are eight Manta Ray Anchors and three Stingray Anchors with light to heavy duty holding capacities. All anchors are made of galvanized ductile iron, can be driven with the drive steel set (except the MR-88 & M-68) and can be tested to the desired holding capacity with the load locker. The anchors are designed to utilize solid steel rods as load carrying members.

Manta Ray & Stingray Anchors

<table>
<thead>
<tr>
<th>Anchor</th>
<th>Structural Safety Factor 2:1</th>
<th>Recommended Anchor Rod</th>
<th>Weight per Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manta Ray</td>
<td></td>
<td>Diameter</td>
<td>Part Number</td>
</tr>
<tr>
<td>MR-68</td>
<td>2.5 kips (11 kN)</td>
<td>3/8” (10 mm)</td>
<td>B8S-03</td>
</tr>
<tr>
<td>MR-88</td>
<td>5 kips (22 kN)</td>
<td>1/2” (12 mm)</td>
<td>B8S-04</td>
</tr>
<tr>
<td>MR-4</td>
<td>8.5 kips (36 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>MR-3</td>
<td>10 kips (45 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>MR-2</td>
<td>20 kips (89 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>MR-1</td>
<td>20 kips (89 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>MR-SR</td>
<td>20 kips (89 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>MK-B</td>
<td>20 kips (89 kN)</td>
<td>#6 - 3/4” (20 mm)</td>
<td>R61-06</td>
</tr>
<tr>
<td>Sting Ray</td>
<td></td>
<td>Diameter</td>
<td>Part Number</td>
</tr>
<tr>
<td>SR-1</td>
<td>49.5 kips (198 kN)</td>
<td>#9 - 1-1/8” (28 mm)</td>
<td>R61-09</td>
</tr>
<tr>
<td>SR-2</td>
<td>50 kips (223 kN)</td>
<td>#9 - 1-1/8” (28 mm)</td>
<td>R61-09</td>
</tr>
<tr>
<td>SR-3</td>
<td>50 kips (223 kN)</td>
<td>#9 - 1-1/8” (28 mm)</td>
<td>R61-09</td>
</tr>
</tbody>
</table>

Williams Anchor Rods are fully threaded and can be field cut and coupled. Anchor rod lengths: R61-06 & R61-09 - Up to 50 feet B8S-03 & B8S-04 - Up to 20 feet

Recommended: Galvanized rods should be cut to size prior to galvanizing to insure good nut fit.

Seawalls
The anchoring of seawalls with Manta Ray Anchors eliminates expensive and complicated tie-back methods. Minimal, if any, excavation is required. Using Manta Ray Anchors results in aesthetically pleasing and cost-effective seawall installations or rehabilitations.

Floating Docks & Moorings
From the Great Barrier Reef to the Red Sea, MANTA RAY anchors are used to anchor moorings that help protect coral reefs and other natural resources. Now there is an environmentally friendly anchor system that installs easily underwater with conventional equipment for buoys, floating docks, man made reefs and more.

Pipelines
Prevent movement of underwater pipeline with the MANTA RAY anchor. Simple installation procedures equate to significant time and cost savings.
Williams offers a full line of Ground Anchors, Concrete Anchors, Post-Tensioning Systems, Wind Turbine Foundation Systems, Marine Tieback Systems and Concrete Forming Hardware Systems for whatever your needs may be.

Also available from Williams are Rock & Soil Anchor Sample Specifications and High Capacity Concrete Anchor Sample Specifications.

Please see web site for most current information
Web: www.williamsform.com
E-mail: williams@williamsform.com

Corporate Headquarters
8165 Graphic Dr.
Belmont, MI 49306
Ph: (616) 866-0815
Fax: (616) 866-1890

251 Rooney Road
Golden, CO 80401
Phone: (303) 216-9300
Fax: (303-216-9400

103 Kestrel Dr.
Collegeville, PA 19426
Phone: (610) 489-0624
Fax: (610) 489-0629

2600 Vulcan Dr.
Lithia Springs, GA 30122
Phone: (770) 949-8300
Fax: (770) 949-2377

6440 Flanders Dr.
San Diego, CA 92121
Phone: (858) 320-0330
Fax: (858) 320-0360

7601 North Columbia
Portland, OR 97203
Phone: (503) 285-4548
Fax: (503) 285-6858

25232 74th Ave. South
Kent, WA 98032
Phone: (253) 854-2268
Fax: (253) 854-2318

670 Industrial Road
London, ON, N5V 1V1
Ph: (519) 659-9444
Fax: (519) 659-5880

Laval, PQ
Ph: (450) 962-2679
Fax: (450) 962-2680

Vernon, BC
Ph: (250) 306-0737
Fax: (519) 659-3623

We have representation in the following organizations: