Williams Form Engineering Corp. Williams Form Engineering Corp.
Williams Form Engineering Corp.
DownloadsDownloadsWhat's NewContact UsAbout UsWilliams Form Engineering Corp.
Ground Anchor Systems
Concrete Anchor Systems
Post Tensioning Systems
Threaded Bars with Fasteners
Tie Rods & Tie Backs
Micro Piles
Concrete Forming Hardware Systems
Williams products are made in the USA

Pre-Stressed Earth Anchors

Rock & Soil
Anchors
Case
Histories
Corrosion
Protection
The pre-stressing of a rock or soil anchor is done by one of two methods. The prefered and most accurate way to pre-stress an anchor is to use a hollow ram hydraulic jack which couples directly to the end of the anchor with a pull rod assembly. The jack frame typically bears against the steel plate while the hydraulic ram transfers a direct tension load to the anchor. When the pre-stress load is reached, the anchor nut is turned tightly against the anchor bearing plate, and the load from the jack is released. The anchor nut prevents the steel from relaxing back to its original length, therefore, the anchor has been pre-stressed. Once the anchor is put into service, additional elongation in the anchor rod only occurs if the applied load exceeds the pre-stress load.

The second method of pre-stressing is to use a torque tension method. Unlike competing products, Williams full, concentric, rolled threads allow for torque tensioning when applicable. This is accomplished by simply turning the anchor nut against the anchor bearing plate with a torque wrench. By using a "torque tension relationship" provided by Williams, the installer can correlate the torque reading to a corresponding anchor tension load. Although not as accurate as direct tensioning, it is often used for fast, economical installations in areas where hydraulic jacks would be cumbersome or difficult to utilize. Torque tensioning is recommended to be done using a high-pressure lubricant under the hex nut to resist frictional resistance.

Pre-stressed earth anchors are often used for resisting cyclic or dynamic loading caused by wind or fluctuating water tables. They are also used to limit or restrict structural movement due to anchor steel elongation. Common applications for pre-stressed earth anchors are tower foundations, tie back walls, slope and dam stability, and tunnel bolting. Non-tensioned anchors or passive dowels are often used for temporary support, resisting shear loads, static loading, or for applications with low consequences of failure.

Benefits of a Pre-Stressed Anchor:

  1. Pre-Tested - By pre-stressing an anchor, each bolt is essentially "pre-tested", assuring it will hold its design load prior to final construction.
  2. Eliminate Fatigue Stress - Fatigue failure is minimized since the service load must exceed the pre-stressed load of the bolt to cause additional steel elongation. Therefore, the periodic stretching and relaxing that causes fatigue failure is eliminated.
  3. Eliminate Uplift - Pre-stressing can eliminate a "floating" condition of a foundation due to the natural hydraulic pressures or uplift loads caused by wind or other overturning moments.
  4. Negligible Bond Stress Relief - In cases where the earth anchor free-stress length is grouted after pre-stress, the grout hardens around the deformations of the bar and bonds to the rock in the drill hole to help prevent stress relief in the bolt.
  5. Corrosion Protection - A pre-stressed earth anchor will not elongate through the grout column in the free-stressing length. Elongation breaks down and cracks the grout, opening the door to corrosion and eventual failure. This is a common problem with passive or "non-tensioned" rock dowels.

Non-Tensioned Dowels May Produce the Following Effects:

  1. Not Pre-Tested - Any application of load onto the bolt will cause the grout to crack in the first several inches of drill hole depth.
  2. Floating Condition - Allows floating of foundation or uplift of the structure due to steel elongation.
  3. Possible Fatigue Failure - Bolt can stretch and relax as the load varies.
  4. Possible Corrosion Problem - Bolt elongation will crack protective grout cover.
With a non-tensioned dowel, anchorage starts at the surface and actually breaks down and cracks the grout as the load transfers deeper along the length of the bolt. Over time the total anchorage may be lost due to these recurring grout breakdowns.

Free Body Diagrams

These diagrams are shown to help illustrate what happens to a pre-stressed anchor when an external load is applied. The external load must exceed the pre-stressed amount before affecting the original load.
1
Pre-stress load of 1000 lbs.
2
External load of 700 lbs.
is applied to the anchor
3
External load of 1500 lbs.
is applied
When a pre-stress load is applied and locked off, the anchorage load is equal to the force carried by the hex nut or the load bearing against the anchor plate. When an external force is applied to a pre-stressed anchor, the force on the bearing plate is reduced by the same amount as the external load. However, the anchor load is still unchanged unless the external load exceeds the pre-stress load. If the external load exceeds the pre-stress load, the nut is no longer holding a load. Then the anchorage load will be the same as the external load until anchor or rock/soil failure occurs.
Williams Form Engineering Corp.
Rock & Soil
Anchors
Case
Histories
Corrosion
Protection
Contact Us Home
Williams Form Engineering Corp. All rights reserved.